
8 Optimal Detection for Additive Noise Channels:

1-D Case

We now derive the optimal demodulator for the waveform channel. From
the previous chapter, we have seen that instead of analyzing the waveform
channel, we can convert it to an equivalent vector channel. The length of the
vector is the same as the size K of the orthonormal basis for the waveforms
s1(t), s2(t), . . . , sM(t). In this chapter, we will assume K = 1. This is the
case, for example, when we use PAM.

Definition 8.1. Detection Problem: When K = 1, our problem un-
der consideration is simply that of detecting the scalar message S in the
presence of additive noise N . The received signal R is given by

R = S +N.

� S is selected from an alphabet S containing M possible values s(1), s(2),
. . ., s(M).

� pS
(
s(j)
)

= P
[
S = s(j)

]
≡ pj.

� S and N are independent.

A detector’s job is to guess the value of the channel input S from the value
of the received channel output R. We denote this guessed value by Ŝ. An
optimal detector is the one that minimizes the (symbol) error probability

P (E) = P
[
Ŝ 6= S

]
.

8.2. The analysis here is very similar to what we have done in Chapter 3.
Here, for clarity, we note some important differences:

� In Chapter 3, The channel input and output are denoted by X and Y ,
respectively. Here, they are denoted by S and R.

� In Chapter 3, the transition probabilities are arbitrary and summa-
rized by the matrix Q. Here, the transition probabilities is basically
controlled by the additive noise.

� In Chapter 3, both X and Y are discrete. Here, S is discrete. However,
because noise is continuous, R will be a continuous random variable.
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Even with these differences, several techniques that we used in Chapter 3
will be applicable here.

Example 8.3. Review: To re-connect with what we studied in Chapter 3,
let’s try to find the Q matrix when the additive noise is discrete. Suppose

pS (s) =


0.3, s = −1,
0.7, s = 1,
0, otherwise,

and pN (n) =


0.2, n ∈ {−0.5,+0.5},
0.6, n = 0,
0, otherwise.

Because R = S +N , we know that

(a) given S = −1, we have R = −1 +N :

(b) given S = 1, we have R = 1 +N :

The Q matrix is given by

Note that each row of the Q matrix is simply a shifted copy of the noise
pmf. The amount of shift is the corresponding value of s for that row.

8.4. Formula-wise, when the additive noise is discrete, each row of the Q
matrix (as in Example 8.3) is given by

pR|S(r|s) = pN(r − s). (47)

8.5. When the additive noise is continuous, there are uncountably many
possible values for the channel output R. Hence, representing conditional
probabilities in the form of a matrix Q does not make sense here.
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When R is continuous, the conditional pmf pR|S(r|s) is replaced by the
conditional pdf fR|S(r|s). For additive noise N with pdf fN(n), we have

fR|S(r|s) = fN(r − s). (48)

Example 8.6. Suppose the discrete additive noise in Example 8.3 is re-
placed by a continuous additive noise:

Ex. Binary PAM under “Triangular” Noise
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Figure 40: Binary PAM under “Triangular” Noise

8.7. The optimal detector, which minimizes the error probability, is the
MAP detector:

ŝMAP (r) = arg max
s∈S

pS(s)fR|S (r |s) = arg max
s∈S

pS(s)fN (r − s) . (49)

Because event [W = j] is the same as event [S = s(j)], we also have

ŵMAP (r) = arg max
j∈{1,2,...,M}

pjfN

(
r − s(j)

)
. (50)

When the prior probabilities are ignored, we have the (sub-optimal) ML
detector:

ŝML (r) = arg max
s∈S

fR|S (r |s) = arg max
s∈S

fN (r − s) . (51)
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and
ŵML (r) = arg max

j∈{1,2,...,M}
fN

(
r − s(j)

)
. (52)

8.8. Graphically, here are the steps to find the MAP detector:

(a) Plot p1fN(r − s(1)), p2fN(r − s(2)), . . . , pMfN(r − s(M)).

� Note that they are functions of r.

� This is similar to scaling the rows of the Q matrix by the corre-
sponding prior probabilities in Chapter 3 to get the P matrix.

(b) Select the maximum plot for each (observed) r value.

� If there are multiple max values, select any.

� The corresponding s(j) is the value of ŝMAP at r.

Example 8.9. Back to Example 8.6.
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Ex. Binary PAM under “Triangular” Noise

Figure 41: MAPD for Binary PAM under “Triangular” Noise

Definition 8.10. The ith decision “region”, denoted by Di for a decoder
ŝ(r) is defined as the collection of all the r values at which r is decoded as
s(i).
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Figure 42: Solving for τMAP in MAPD for Binary PAM under “Triangular” Noise

� The collection D1, D2, . . . ,DM should partition the whole observable
values (support) of R.

Example 8.11. Back to Example 8.6.
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Figure 43: Decision Regions in MAPD for Binary PAM under “Triangular” Noise

8.12. The error probability of a detector can be found via its success prob-
ability
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P (C) =
M∑
i=1

P
(
C|S = s(i)

)
P
[
S = s(i)

]
=

M∑
i=1

P
[
R ∈ Di

∣∣∣S = s(i)
]
pi

=
M∑
i=1

piP
[
S +N ∈ Di

∣∣∣S = s(i)
]

=
M∑
i=1

piP
[
N + s(i) ∈ Di

]
=

M∑
i=1

pi

∫
Di

fN

(
r − s(i)

)
dr =

M∑
i=1

∫
Di

pifN

(
r − s(i)

)
dr.

This gives

P (E) = 1− P (C)

=
M∑
i=1

pi

∫
Dc
i

fN

(
r − s(i)

)
dr =

M∑
i=1

∫
Dc
i

pifN

(
r − s(i)

)
dr.

Although, at first, the above expressions may look complicated, it is similar
to what we did in Chapter 3: graphically, the area under the max (selected)
plot is P (C).

Example 8.13. Back to Example 8.6.
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Figure 44: Probability of Successful Detection for Binary PAM under “Triangular” Noise
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